src.classification package¶
Subpackages¶
- src.classification.fusion package
- src.classification.image package
- src.classification.plant package
- Submodules
- src.classification.plant.dense_classifier module
- src.classification.plant.lstm_classifier module
- src.classification.plant.mfcc_cnn_classifier module
- src.classification.plant.mfcc_resnet_classifier module
- src.classification.plant.nn_classifier module
- src.classification.plant.plant_emotion_classifier module
- Module contents
- src.classification.speech package
- Submodules
- src.classification.speech.byols_classifier module
- src.classification.speech.gmm_classifier module
- src.classification.speech.hmm_classifier module
- src.classification.speech.hubert_classifier module
- src.classification.speech.mfcc_lstm_classifier module
- src.classification.speech.speech_emotion_classifier module
- src.classification.speech.svm_classifier module
- src.classification.speech.wav2vec2_classifier module
- Module contents
- src.classification.text package
- src.classification.watch package
- Submodules
- src.classification.watch.dense_classifier module
- src.classification.watch.lstm_classifier module
- src.classification.watch.nn_classifier module
- src.classification.watch.random_forest_classifier module
- src.classification.watch.transformer_classifier module
- src.classification.watch.watch_emotion_classifier module
- src.classification.watch.xgboost_classifier module
- Module contents
Submodules¶
src.classification.classifier_factory module¶
src.classification.emotion_classifier module¶
Implement an emotion classifier base class
- class src.classification.emotion_classifier.EmotionClassifier(name: str = 'base', data_type: Optional[str] = None, parameters: Optional[Dict] = None)¶
Bases:
ABC
This class is the base class for all emotion classifiers
- abstract classify(parameters: Dict, **kwargs) array ¶
The virtual classification method for interfacing
- Parameters:
parameters – Parameter dictionary used for classification
kwargs – Additional kwargs parameters
- Returns:
An array with predicted emotion indices
- get_class_weights(which_set: Set, parameters: Optional[Dict] = None) Dict[int, int] ¶
Function that returns a class weights dictionary for a given dataset. The dictionary’s keys are the labels and the values are the counts.
- Parameters:
which_set – Which set to use for calculating the class weights.
parameters – Parameter dictionary
- Returns:
Dictionary with the class weights
- static init_parameters(parameters: Optional[Dict] = None, **kwargs) Dict ¶
Function that merges the parameters and kwargs
- Parameters:
parameters – Parameter dictionary
kwargs – Additional parameters in kwargs
- Returns:
Combined dictionary with parameters
- abstract load(parameters: Optional[Dict] = None, **kwargs) None ¶
Loading method that loads a previously trained model from disk.
- Parameters:
parameters – Parameters required for loading the model
kwargs – Additional kwargs parameters
- abstract save(parameters: Optional[Dict] = None, **kwargs) None ¶
Saving method that saves a previously trained model on disk.
- Parameters:
parameters – Parameters required for storing the model
kwargs – Additional kwargs parameters
- abstract train(parameters: Dict, **kwargs) None ¶
The virtual training method for interfacing
- Parameters:
parameters – Parameter dictionary used for training
kwargs – Additional kwargs parameters
Module contents¶
Package responsible for emotion classification