src package¶
Subpackages¶
- src.classification package
- Subpackages
- src.classification.fusion package
- src.classification.image package
- src.classification.plant package
- Submodules
- src.classification.plant.dense_classifier module
- src.classification.plant.lstm_classifier module
- src.classification.plant.mfcc_cnn_classifier module
- src.classification.plant.mfcc_resnet_classifier module
- src.classification.plant.nn_classifier module
- src.classification.plant.plant_emotion_classifier module
- Module contents
- src.classification.speech package
- Submodules
- src.classification.speech.byols_classifier module
- src.classification.speech.gmm_classifier module
- src.classification.speech.hmm_classifier module
- src.classification.speech.hubert_classifier module
- src.classification.speech.mfcc_lstm_classifier module
- src.classification.speech.speech_emotion_classifier module
- src.classification.speech.svm_classifier module
- src.classification.speech.wav2vec2_classifier module
- Module contents
- src.classification.text package
- src.classification.watch package
- Submodules
- src.classification.watch.dense_classifier module
- src.classification.watch.lstm_classifier module
- src.classification.watch.nn_classifier module
- src.classification.watch.random_forest_classifier module
- src.classification.watch.transformer_classifier module
- src.classification.watch.watch_emotion_classifier module
- src.classification.watch.xgboost_classifier module
- Module contents
- Submodules
- src.classification.classifier_factory module
- src.classification.emotion_classifier module
- Module contents
- Subpackages
- src.data package
- Submodules
- src.data.balanced_image_data_reader module
- src.data.balanced_plant_exp_reader module
- src.data.balanced_watch_exp_reader module
- src.data.classwise_speech_data_reader module
- src.data.comparison_image_data_reader module
- src.data.comparison_speech_data_reader module
- src.data.comparison_text_data_reader module
- src.data.data_factory module
- src.data.data_reader module
- src.data.experiment_data_reader module
- src.data.fusion_data_reader module
- src.data.image_data_reader module
- src.data.plant_exp_reader module
- src.data.speech_data_reader module
- src.data.text_data_reader module
- src.data.watch_exp_reader module
- Module contents
- src.evaluation package
- src.experiment package
- src.utils package
Submodules¶
src.emotion_set module¶
This file defines the emotion sets that are available in this work.
- class src.emotion_set.AbstractEmotionSet(name: str, count: int, classes: Iterable[str])¶
Bases:
object
This class implements the abstract interface for all emotion sets.
One problem in emotion detection is that a lot of different emotion sets are used throughout the past research. While one paper predicts only positive, neutral and negative emotions, another one might differentiate between 6 or more distinct emotions (joy, anger, fear, …). This class models this behaviour by defining different emotion sets.
- get_emotions(indices: Union[int, ndarray]) Union[str, ndarray] ¶
This function returns the emotion strings for given indices
- Parameters:
indices – The index or indices of the emotions
- Returns:
Array of emotion strings or single emotion string
- class src.emotion_set.EkmanEmotions¶
Bases:
AbstractEmotionSet
Emotion set defined by Paul Ekman that is commonly used in research. It contains 6 basic emotions: anger, surprise, disgust, enjoyment, fear, and sadness
- class src.emotion_set.EkmanNeutralEmotions¶
Bases:
AbstractEmotionSet
Ekman Emotion set extended by a neutral state.
- class src.emotion_set.EmotionMapper¶
Bases:
object
- map_emotion(emotion: str) str ¶
Maps an emotion to its equivalent in the NeutralEkman emotion set.
- Parameters:
emotion – The name of the emotion to map to Ekman
- Returns:
The name of the corresponding Ekman emotion
- setup_map() None ¶
One time setup for the emotion map in the class.
- class src.emotion_set.EmotionSetFactory¶
Bases:
object
Factory class that generates emotion set instances
- static generate(name: str) AbstractEmotionSet ¶
Method that creates and returns an instance of the emotion set specified by the name parameter
- Parameters:
name – The name of the desired emotion set
- Raises:
ValueError – Raised if the name does not represent an emotion set
- Returns:
The created emotion set
- class src.emotion_set.ThreeEmotions¶
Bases:
AbstractEmotionSet
Simple emotion set with only three categories: positive, neutral, negative
Module contents¶
Package containing the entire source code